

Dr. Alexander Fromm Stochastic Analysis (SS 2019)

Exercise sheet 1

Department of Mathematics

Problem 1

Let $(X_n)_{n>0}$ be the simple random walk, i.e.

$$X_0 = 0,$$
 $X_n = \sum_{i=1}^n Z_i,$ $(Z_i)_{i \ge 1}$ i.i.d. with $\mathbb{P}[Z_i = 1] = \frac{1}{2} = \mathbb{P}[Z_i = -1].$

Let $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and $\mathcal{F}_n = \sigma(Z_1, ..., Z_n), n \ge 1$. Check (and prove) whether the following random times are stopping times.

- (a) $\tau_1 = \max\{n \le 6 \mid X_n = 3\}$
- (b) $\tau_2 = \min\{n \ge 1 \mid X_n = 0\}$
- (c) $\tau_3 = \min\{n \ge 3 \mid X_n = -2\} 2$

Define $\min\{\emptyset\} = \infty$ and $\max\{\emptyset\} = 0$.

Problem 2

(2 Points)

Let $(X_n)_{n\geq 0}$ be an (\mathcal{F}_n) -martingale. Let $(H_n)_{n\geq 1}$ be (\mathcal{F}_n) -predictable. Show that if $X_n \in L^2$, $n \ge 0$, and $H_n \in L^2$, $n \ge 1$, then $(I_n^X(H))_{n \ge 0}$ is an (\mathcal{F}_n) -martingale.

Problem 3

(4 Points)

(2 Points)

Let $(X_n)_{n>0}$ be an (\mathcal{F}_n) -martingale and τ an (\mathcal{F}_n) -stopping time. Show that

$$\mathbb{E}[X_{\tau}] = \mathbb{E}[X_0]$$

if

(a) $(X_n)_{n\geq 0}$ is bounded and $\tau < \infty$, a.s.

(b) τ is integrable and $|X_n - X_{n-1}| \le K < \infty$, a.s., for all $n \ge 1$.

Problem 4

Show that the random times τ_1, τ_2, \dots defined after Corollary 1.8 are stopping times.

Submission: 17.04.2019

(3 Points)

Problem 5

Let τ and ϑ be (\mathcal{F}_n) -stopping times. Show that

- (a) \mathcal{F}_{τ} is a σ -algebra,
- (b) if $\vartheta \leq \tau$, then $\mathcal{F}_{\vartheta} \subseteq \mathcal{F}_{\tau}$,
- (c) if $(X_n)_{n\geq 0}$ is adapted to (\mathcal{F}_n) and $\tau < \infty$, a.s., then X_{τ} is \mathcal{F}_{τ} -measurable.

Total: 15 Points

Terms of submission:

- Solutions can be submitted in groups of at most 2 students.
- Please submit at the beginning of the lecture or until 08:10 a.m. in room 3523, Ernst-Abbe-Platz 2.